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ABSTRACT

The swift rise of internet users in Nepal has proliferated the amount of content uploaded by
the day. The advent of many platforms has evolved from simple text based communications
allowing the users to share content in the form of audio and video. While this has provided the
users with flexibility, it has also made it difficult to search for relevant content on the internet.
This is more so the case for low resource languages like Nepali, where speech recognition
systems have not evolved as it has for resource rich languages like English. This project pro-
poses a semi-supervised Automatic Speech Recognition (ASR) and classifier in the form of a
web interface which classifies audio/video based on its content. The shortcomings of low re-
source language is mitigated in supervised approach by using wav2vec 2.0, a self-supervised
framework for learning contextualized representations. The english wav2vec 2.0 and Cross
Lingual Speech Representations for Indic Languages (CLSRIL-23) model trained on indic
languages is pretrained and finetuned on Open Speech and Language Resources (OpenSLR)
dataset to create a Nepali ASR. The CLSRIL-23 model outperforms the wav2vec 2.0 model
in most test sets achieveing a word error rate of 23.05 in OpenSLR female dataset. For classi-
fication, Multilingual Representations for Indian Languages (MuRIL) model, a Bidirectional
Encoder Representations from Transformers (BERT) based model trained on indic languages
is utilized to classify the transcriptions generated among a set of categories. The MuRIL
model achieves 92.06 percent accuracy. The overall Machine Learning (ML) pipeline is en-
compassed in a web application whereby classified and transcribed videos can be searched
on the basis of their content. All the implemented code and related files are available at:

https.//github.com/akppprojects/asrtcnl.

Keywords : Automatic Speech Recognition, Deep Learning, Natural Language Processing,

Speech Processing, Text Classification, Transformer
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1. INTRODUCTION

The amount audio and video content uploaded on the internet is proliferating day by day. With
that, it has become more difficult for people to filter genuine content for their consumption.
This has become a very common problem in Nepali online media portals. Misleading titles,
click-baits in audio/video contents have become unavoidable in social media and streaming
sites. This demands for techniques to analyze and classify audio contents automatically to aid
content filtering. There have been efforts to develop audio classification systems mostly using
aspects other than speech content, like music, environmental noise, etc. But there doesn’t
seem to have been any notable work to develop an end to end system for speech content
classification. So for now, the most appropriate approach for this seems to be conversion of
speech to text using Automatic Speech Recognition (ASR), followed by text classification
using Natural Language Processing (NLP) techniques.

ASR is one of the most important applications of speech processing where human audio data
or speech is converted to it’s corresponding text, which can further be applied to tasks like
speech to text translation, virtual assistant, voice recognition, speech emotion recognition,
speech content classification, etc. In general, processing and analysis of human speech has
always been one of the major goals of computer language processing. The rapid development
of Artificial Intelligence (Al) has also aided a lot to the development of speech processing
technologies. Various techniques ranging from Hidden Markov Model (HMM), Artificial
Neural Networks (ANN), Recurrent Neural Networks (RNN), etc. to transformers today,
have been widely used for speech processing. In comparison to traditional machine learn-
ing techniques where feature engineering and extraction require a lot of manual effort, the
use of Deep Learning (DL) has led to development of models that learn complex features

automatically and has thus provided an effective approach for speech processing.

As of now, the most typical approach to solve the task of ASR using Machine Learning
(ML) has been supervised approach, which requires a large number of transcribed text corre-
sponding to the speech data. The amount of labelled data the supervised algorithms require
are usually a bottleneck, especially for low resource Languages like Nepali. Unsupervised
learning algorithm that need no labelled data and self supervised learning algorithms that
need very less amount of labelled data to solve ML problems existed from really long ago.
But the adaptation of those to DL started more recently as the development of DL started
taking pace with the availability of enough computing power and large amount of data. So
the introduction of unsupervised and semi supervised DL based approaches to solve ASR

dates only a few years back. These approaches work well with very zero or very less amount



of transcribed data. Since in this age of internet, very large amount of unlabelled data can
be found on the web, low resource languages like Nepali can benefit a lot from the use of

unsupervised or semi supervised techniques for ASR.

In the case of Nepali language, due to the lack of transcribed data, we have not seen very
remarkable results in speech processing tasks like speech recognition on adapting the same
supervised techniques that have worked far better for English and western languages with
huge amount of transcribed data. On the other hand, Nepali language has quite a complex
morphology, difficult to represent and analyze even for humans, let alone computers. So an-
other advantage of using unsupervised and semi supervised techniques could be the freedom

that these techniques add to the models in learning the intermediate representations of speech.

Recently developed unsupervised and semi supervised speech processing techniques have
proven to show far better results with very less amount of transcribed data in English and
other languages as well. As we have been stressing to it, the adaptation of these techniques
to Nepali is much easier with the context of data collection. So, the use of unsupervised
approaches can lead to new developments in the field of Al and speech understanding for
the Nepali language. While it is usually very difficult to collect transcribed text for Nepali
speech, unlabelled, raw audio samples are easily available all over the Internet as well as
various other sources like radio and television archives. This is one of the main reasons to
follow an unsupervised approach for learning Nepali speech representations. To be specific,
unsupervised and semi supervised techniques have shown some excellent results in the task

of speech recognition in other languages recently.

1.1. Project Background

Speech recognition can be applied to a wide range of applications. The transcriptions gen-
erated by ASR models can be used in many interesting applications with the use of NLP
techniques. This project focuses on the use of Nepali speech transcriptions of audio and
video contents from ASR for content classification. We generally see videos and audios in
the Internet and social media being classified based on their titles. Most of the time the clas-
sification tags for the videos/audios are given manually. However, best way to tag any sort
of audios or videos would probably be to use the audio content it contains, not the title or
any other attributes associated with it. Thus, in our project we have tried to build a web
application that can generate transcriptions for video and the categories that best match the
video based on the audio content. We have also tried to build an interface that can be used as
a audio/video content portal with transcriptions of audio/videos displayed according to their

classification tags and visualization of statistics of those content.



1.2. Motivation

Compared to other languages like English, there hasn’t been much research and development
in Nepali speech and language systems. At present, Nepali language comes as a low resource
language due to the lack of efforts and contribution in collection of data and other resources
for Nepali language.

For these reasons, unsupervised and semi supervised methodologies that require very less
data can be really beneficial for Nepali and deserves some research focus and attention. This
would help us build better ASR systems and incorporate Nepali Language Understanding in

modern intelligent systems.

1.3. Objectives

The main objectives of the project can be summarized in the following points:

* To experiment with unsupervised/semi-supervised techniques of speech representation

learning in Nepali language.

* To use and evaluate the unsupervised representations obtained by pretraining the un-

supervised learning models in the downstream task of ASR.
» To explore NLP techniques for Nepali content classification.

* To develop an interactive web interface to demonstrate the components above as a

complete pipeline.

1.4. Problem Statement

ASR is an interesting area of research in the application of ML these days. It is due to the
fact that it has applications in different areas like speech-to-text conversion. With the devel-
opment of new technologies and growing amount of data, different ML and DL models like
RNN and Long Short-Term Memory (LSTM) have come as frameworks for developing ASR
applications. These frameworks mostly provide a way to develop models whose parameters
can be learned by providing sufficient amount of labelled data. These models worked well
with languages like English, with a lot of researchers and contributors working on it for a
long time to make large amount of labelled data available. For low resource languages like

Nepali, it has always been a challenge since there hasn’t been enough work to collect labelled



data for these data hungry models. On the other hand, the use of semi-supervised methods
allow learning representations from unlabelled data which can then be trained to map speech
to corresponding transcripts using very less amount of labelled data. This provides a more
feasible method, in terms of availability of data to develop ASR system for low resource
languages like Nepali. We also aim to use the output of ASR model to classify the audio
into a set of suitable categories. This facilitates classifying a video/audio based on it’s actual

content rather than other less informative attributes like title.

1.5. Scope of the project

The main idea of the project is to train an unsupervised model to learn representations of
Nepali speech and using those representations to obtain audio transcripts. Finally we’ll use

NLP techniques to classify the content into appropriate categories.

The final product of this project shall be a web interface which can give transcriptions and
classification tags corresponding to a given audio and also a portal with audio/video content
statistics. We do not aim to develop a product ready for release but one to demonstrate the
prospects of using unsupervised learning for extracting speech representations for the Nepali
language to aid downstream tasks like speech recognition which is usually constrained by
unavailability of labelled data resources in supervised learning. This project intends to con-
tribute for development in the field of Nepali speech representations and recognition, over-

coming resource limitations in terms of data.

1.6. Organization of the Report

The report has been organized in following chapters:

 Chapter 1: It includes the introduction and background of our project, our motivation

and objectives in doing the project and the scope it covers.

 Chapter 2: It includes review of existing literature and related works that have notable

contribution to the problem we are solving.

* Chapter 3: It includes some theoretical background and links to other resources to help

readers understand our work.

* Chapter 4: It includes the design specifications and feasibility assessment our our sys-

tem.



Chapter 5: It includes the methodology, details about application development and ML

model development, experimental setups we followed to develop the project.

Chapter 6: It includes the results we obtained by our experiment and corresponding

analysis.
Chapter 7: It includes the example outputs of our web application

Chapter 8: It includes discussions regarding our views on potential causes and sources

of errors in the project.
Chapter 9: It includes conclusion of the entire project.

Chapter 10: It includes the limitations in our project and some ideas for future en-

hancements.



2. LITERATURE REVIEW

2.1. Automatic Speech Recognition (ASR)

The solution to the problem of ASR seems to have started from the time of Graham Bell when
he tried to convert sound waves into electric impulses. With time, various probabilistic mod-
els like Gaussian Mixture Model (GMM) in [1, 2] and HMM in [3, 4] started being used for
ASR. Traditional ML algorithms required speech features to be hand crafted using techniques
like Mel Frequency Cepstral Co-efficients (MFCC) in [5], Linear Predictive Coding (LPC) in
[6], etc. With the advent of DL, fully connected feed forward neural network, Convolutional
Neural Networks (CNN) started being used as deep feature extractors for ASR systems as in
[7]. More recently, more powerful models based on recurrent networks like RNN[8] were
developed. For training of these systems, the difference in input and output alignment re-
quires an optimal algorithm that would correctly incorporate all alignments corresponding to
a target output. For the purpose, Connectionist Temporal Classification (CTC)[9], which can
automatically map input and output alignments during training using dynamic programming
algorithms was developed. Incorporating attention mechanism to the RNN encoder-decoder

showed great results in phoneme recognition.[10]

Following above ideas and techniques proven for English and other languages, there have
been some efforts to develop automatic speech recognition system for Nepali as well. [11]
developed a model that worked by maintaining a database to store patterns of amplitude of
speech at a particular frequency for a particular user and using it to identify syllable and
letter of user’s speech at a certain frequency . [12] used HMM, creating Markov chains of
training words as sequences of features obtained by MFCC to perform word level recognition
of Nepali speech . [13] were one of the first to use DL for the Nepali ASR. They used
Bidirectional RNN with LSTM cells and CTC training for character level speech recognition
and then [14] used a similar CNN, Gated Recurrent Unit (GRU) and CTC based model.
But due to the lack of huge amount of labelled dataset, these methods have not given very

impressive results for Nepali Language.

While most of the approaches mentioned above are supervised ML algorithms, that require
large amount of labelled dataset, in order to address the problem of unavailability of huge
amount of labelled data sets especially in low resource languages, unsupervised approaches
to learn speech representations started being developed. Inspired by the idea of develop-
ing fixed length representations for words in a text to use in NLP techniques in [15], Au-
dio2Vec[16] proposed a way to learn audio embedding with the help of sequence-to-sequence



auto-encoder. The idea was further extended to use Generative Adversarial Network (GAN)
for phoneme recognition in [17] and speech recognition in [17] tasks. Wav2vec[18] has two
CNNss stacked on top of each other, to learn representations through unsupervised pretrain-
ing before finetuning the model for a downstream task paved pathways for other works on
wav2vec series. Quantization of those learned representation to discrete representations using
gumbel softmax or k-means clustering provided even better results in [19]. Wav2vec2.0[20]
showed that learning powerful representations from speech audio alone followed by fine-
tuning on transcribed speech can outperform other methods. It extended the preceding ideas
by [18] and [20] to develop a model with a CNN feature extractor that outputs latent speech
representations, stacked with a transformer encoder to output contextualized speech repre-
sentations. The model was trained using a contrastive task of identifying quantized speech

representations corresponding to latent speech representations with masked input.

Sharing of low level speech representations across multiple languages can help low resource
languages use models pre-trained on other similar language as well as multilingual corpus
to learn cross-lingual representations. [21] show that such representations have shown very
effective results in the downstream tasks like speech recognition. This idea has also inspired
Cross Lingual Speech Representations for Indic Languages (CLSRIL-23)[22], which is a
model pretrained on top of wav2vec2[20], using 23 Indic languages, including Nepali. The
use cross-lingual representations from such a model can thus be extremely useful for low

resource languages like Nepali as it is closely related with many other Indic languages.

2.2. Text Classification

A state-of-the-art approach to classify speech into a set of categories involves getting tran-
scriptions from the speech and using a set of NLP techniques on the obtained transcriptions.
In order to assign tags to British Broadcasting Corporation (BBC)’s radio programmer’s au-
dio, [23] used the HUB4 acoustic model and a language model extracted from the Gigaword
corpus5 to get the transcripts from the speech audio and later candidate terms were mapped to
a set of identifiers on the basis of Term Frequency - Inverse Document Frequency (TF-IDF)
score. The use of LSTM [24], an RNN model has been widely used for NLP applications like
text classification. Recently, The introduction and development of transformer based models
has introduced many powerful models for NLP tasks. Bidirectional Encoder Representa-
tions from Transformers (BERT) [25] is a transformer [26] model which has been massively
adopted as a base model to get the representations of the input text which is then applied
to downstream tasks. Multilingual Representations for Indian Languages (MuRIL) [27] is a
model based on BERT architecture which has been trained on large corpus of Indic languages

and has been used for language related downstream tasks in Indic languages. [28] used the



text representations from MuRIL model for offensive language identification in Dravidian

languages .



3. THEORY

3.1. Machine Learning (ML)

The term machine learning was first coined by Arthur Samuel in 1959 describing two pro-
cedures which learnt to play a better game of checkers [29]. While the definition of the term
itself has undergone slight changes, machine learning today is the science of getting comput-
ers to perform a task without explicitly programming them to do so. Since it’s inception, ML
has widely been regarded as a sub-field of Al. Today, some assert that ML is a separate field

which overlaps with Al because it borrows models from statistics and probability theory.

While ML itself remains a broad spectrum, the core algorithms are usually fed with passive
observations. ML algorithms rummage these passive observations to search for patterns in
similar data. The vast sphere of Machine learning can be categorized, depending upon the
type of data used, upon the feature extraction process and also on the statistical models used.
DL(3.2) is a sub-field of machine learning where the features need not be handcrafted. While
deep learning is a subset of machine learning, ML algorithms sometimes refer to the subset

other than deep learning.

3.2. Deep Learning (DL)

DL is the subset of machine learning that uses multiple layers to extract higher-level and com-
plex features from the raw input. The traditional machine learning algorithms require hand
engineering to extract features from the data. However, deep learning uses a combination of
various techniques to automatically learn features and complex patterns from the data. DL
has been massively applied in the areas related to image processing, computer vision, natural

language processing, speech processing, etc.

Neural networks are the fundamental building blocks of deep learning which are composed
of layers of neurons each of which learns a certain feature from the data. Each neuron is
associated with a series of weights attached to it. As shown in figure 3.1, a neuron computes

the weighted sum of inputs and applies a non-linear activation function to it.

There are wide varieties of neural networks used in real world applications. In this section,

we’ll explain the two most widely used classes of neural networks, ANN and CNN.
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Figure 3.1: A neuron

3.2.1. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN)s are also called feed-forward neural networks which con-
sists of multiple hidden layers in between the input and the output layer. These hidden layers
learn extensive features from the raw input supplied to the network. Basically, each layer in

ANN learns certain weights via the method of backpropagation.
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Figure 3.2: Architecture of Artificial neural networks

3.2.2. Convolutional Neural Networks (CNN)

CNNs is a class of neural networks applied mostly for the tasks of images and video process-
ing. The building blocks of CNNss are filters which are used to extract features from the input

using the convolution operation.

A typical CNN Architecture consists of a combination of these layers:
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3.2.2.1 Convolutional Layer A filter matrix is convolved with input to detect certain
patterns. For an image, the beginning convolution layers are responsible for capturing the
low-Level features such as edges, color, gradient orientation, etc. As we proceed to the further
layers, the architecture adapts to the high-level features as well, giving us a network that has

a wholesome understanding of the input.

3.2.2.2 Pooling Layer The pooling layer is responsible for reducing the spatial size of the
convolved feature. Max Pooling returns the maximum value from the portion of the input
covered by the kernel. On the other hand, Average Pooling returns the average of all the

values from the portion of the input covered by the Kernel.

3.2.2.3 Fully Connected Layer Adding a Fully-Connected layer is usually a cheap way
of learning non-linear combinations of the high-level features as represented by the output of
the convolutional layer. The Fully-Connected layer is learning a possibly non-linear function
in that space.

Fully
Connected

0“«:~.
o

Convolution

Pooling_’__.-»-""_ Output

Input

O

O .

. O

\ A\ )

Feature Extraction Classification

Figure 3.3: Architecture of Convolution neural network

Source: https://www.researchgate.net/figure/
Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26 _figl 336805909

3.3. Recurrent Neural Networks (RNN)

In ML, Representation Learning refers to the process of learning representations of input
data in the process of transforming it to the output or by extracting some latent features from
it. There are different ways in which representations are learnt in different types of ML
Algorithms.

Probabilistic Models like Bayesian Classifiers learn representations that describe distribution

11
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of the features followed by the input, that can be used for prediction tasks. On the other hand,
in Deep Neural Networks, representations are obtained as a result of a series of linear and
non-linear transformations the input data undergoes, through different layers in a hierarchical
pattern with the goal of yielding representations that can be useful in some downstream task
like classification, prediction, etc. Thus in DL, the depths in the network is one of the agent

that aids in learning representations, be it supervised algorithms or unsupervised.

Through all these years, supervised learning has been the most successful approach for train-
ing deep neural networks. In the domain of Computer Vision, huge amount of labelled dataset
such as the ImageNet, has helped training of deep neural network models and learn represen-
tations that not only solve the primary task of say image classification in this case, but also
to be used as a good starting point for other tasks like object detection, facial recognition,
etc. This concept of transfer learning has been used successfully in many different domains,

other than Computer Vision as well.

So far, we have been only looked at how deep neural networks can learn generalize repre-
sentations by solving supervised tasks. In such methods, we rely on having a lot of annotated

data to learn the representations for at least the primary task.

However, supervised learning might not always be the most appropriate technique to learn
representations and share them for multiple tasks. Unsupervised representation learning at-
tempts to learn very useful features from unlabeled data that can be used to improve the
performance of many downstream tasks and reduce the necessity of labelled data. Autoen-
coders used in Computer Vision, models like Generative Pretrained Transformer (Generative
Pretrained Transformer (GPT)) and BERT [25] in NLP leverage unsupervised representa-
tion learning to tackle learning problem in respective domains. BERT is pre-trained on self-
supervised learning task that does not require manually annotated data and its parameters
can be finetuned to tackle downstream language tasks. In very recent years, there has been
a significant role of such unsupervised representation learning in the domain of Speech as
well. With the advent of such approaches in [18] and its successors, who follow architecture
and training analogous to BERT in NLP, Speech related tasks for Low Resource Languages
have been much easier to solve in terms of labeled data collection, with great results as well.

For more detailed overview, see [30].

3.4. Transformer model

Before transformers, the dominant sequence transduction models were based on complex

recurrent and CNN(3.2.2) that employed the encoder-decoder architecture. Those models

12



which fared better also employed an encoder-decoder architecture connected through atten-
tion mechanism. But the symbol positions of the input and output sequences is typically
taken into account while factoring computation in recurrent models. They align the positions
to steps which in turn precludes parallelization within training examples. Transformers de-
liberately abstain from recurrence and base solely on attention mechanisms to extract and use
information from arbitrarily large contexts without passing it through intermediate recurrent

connections.[26].

3.4.1. Self-attention

Attention-based approach compares an item of interest to a collection of other items in a way
that reveals their relevance in the current context. The mechanism of performing a set of
comparisons made to other elements within the same sequence is called self-attention. The

attention process is better understood through, guery, key and value abstractions.

* When the input embedding is a query, it serves as the current focus of attention as it is

compared to all other preceding inputs.

* When the input embedding is a key, it is compared to the current focus of attention as

a preceding input.

* When the input embedding plays its role as a value, it is used to compute the output

for the current focus of attention.

The weight matrices W2, WX and WV are used to project each input vector x; into a rep-
resentation of its role as query, key, or value. To take advantage of parallelization, input
embeddings of N tokens of input sequence are packed into a single matrix X € RV*?, X is
then multiplied by the key, query, and value matrices producing matrices Q € RV, K € RV,
and V € RV containing all the key, query, and value vectors.

0=xW%K=xwkyv =xwV (3.1

The self-attention scores can be calculated as the dot product between query vector and the
preceding element’s key vector in the form of requisite matrix. Since, the dot product may be
arbitrarily large, the result of the dot product is divided by the square root of dimensionality

of query and key vector, dj.
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3.4.2. Layer normalization

(3.2)

The residual connection from the input to the encoder block and the self attention score is

fed to the normalization layer. Layer norm is a slight variation to the z-score, applied to a

single hidden layer. The mean u and standard deviation ¢ is calculated over the vector to be

normalized. For a hidden layer with dimensionality d,

The final equation constitute of two learnable parameters, gain(y) and offset(f3).

LayerNorm = y£+

3.5. Connectionist Temporal Classification (CTC)

(3.3)

(3.4)

(3.5)

(3.6)

Connectionist Temporal Classification(CTC) is a classic methodology for sequence tasks like

handwriting and speech recognition. CTC comes in handy for tasks where the alignment

between input and output is not known. Let us suppose, for a speech recognition task there

are input sequences X = [x1,x3,...,x7| which represents audio and output sequences ¥ =

[V1,Y2,...,yu| representing transcripts corresponding to the audio.

It’s complicated to use normal supervised algorithms for this task because of the following
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Figure 3.4: Simplified visualization of transformers with two stacked encoder and decoder

Source: https://jalammar.github.io/images/t/transformer resideual layer norm 3.png

réasons:

1. Xand Y can vary in length.
2. The ratio of lengths of X and Y vary from data to data.

3. Due to the reasons above, it’s difficult to align an element of X to an element of Y.

CTC overcomes all the above challenges as it gives a probability distribution for all possible
alignments for a given output Y. CTC works by outputting a single character for every frame
of the input resulting in an output of length equal to the length of the input. It later uses a
collapsing function to shorten the output length resulting in a shorter sequence.

The process of mapping a sequence of audio into text can be represented by the following
diagram:
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Figure 3.5: Visual representation of CTC algorithm

Source: https://web.stanford.edu/~jurafsky/slp3/26.pdf
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Figure 3.6: Valid alignments for the word “dinner”

Source: https://web.stanford.edu/~jurafsky/slp3/26.pdf

3.5.1. Alignment

As shown in the above diagram, an alignment is an intermediary step in CTC which represents
the sequence of letters corresponding to each input frame. As shown above, the alignments
have an additional token €. This is a special token for a blank introduced by CTC when
we don’t want to include anything in the transcript for that corresponding input frame. € is

generally used in two cases:

* To represent the silence in the input audio frame.

* To represent a gap between two output labels with same value. Without &, the word

dinner would correspond to diner in the above example.

An important property of alignment is that an output element can have many alignments but

not vice-versa. Fig. 3.6 shows some other valid alignments for the word “dinner”.

3.5.2. Decoding

A typical output of a network trained using any CTC algorithm looks like the figure 3.7.
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Figure 3.7: An output of a CTC Network

Here, we can see that for each time step in the output, the network gives probability distribu-
tion over all the characters in the vocabulary. Hence this output represents only an alignment
with repeated characters and blank tokens included, and thus needs to be collapsed in order

to give the final output.

But there can be various approaches to decoding the output to produce appropriate result as it
is clear that multiple alignments can collapse to the same output. Before we see how a final
output is assigned probability scores, let us first see how a particular alignment is assigned a

probability score.

ForanalignmentA = {ay,a,as, ...,a, } corresponding to an input X, CTC assumes the output
at all time steps, t is independent of any other time step. So, probability of alignment A is

thus given as:

Perc(AIX) ={_; p(ai|X) (3.7)

With the greedy approach, we can thus find the best alignment by choosing character with
maximum probability at each time step and then collapse to a single output.

But with this approach, we may not obtain the best output possible as the most likely align-
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ment, A need not correspond to the most likely output Y. For example: let the alignments
[a, a, €] and [a, a, a] individually have lower probability than [b, b, b]. But the sum of
their probabilities is actually greater than that of [b, b, b]. The greedy approach of decoding
will decode to Y=Db as the most likely hypothesis, while it should have chosen Y= [a]. The
algorithm needs to consider the fact that [a, a, a] and [a, a, €] collapse to the same output.

So the most probable output Y should be the one with the highest sum of probabilities corre-
sponding to all the alignments A that can map to Y.

Y* = argmaxy Perc (Y |X) (3.8)

Naively summing over all the alignments though is very expensive. So this sum is com-
puted by using a version of Viterbi beam search that stores in the beam the high-probability
alignments that map to the same output and sums those.

In speech recognition and some other problems, including a language model over the outputs
significantly improves accuracy. So we can include the language model as a factor in the
inference problem. For that, the score given to an output also incorporates language model
score (LM(Y)) whenever a word is inserted. The score is given as:

Y* =argmaxyP(Y|X)«LM(Y) * (3.9)

Here, ¢ is the Language Model (LM) score which is a hyperparameter.

3.6. Natural Language Processing (NLP)

Natural language processing is the branch of Al that enables computers understand and in-
terpret human language. NLP aims to connect the areas of linguistics, computer science and
Al together. The techniques of NLP allow computers to process language in the form of text

or speech, understand the semantics of language and perform further analysis.

Some of the common and widely used tasks of NLP are language translation, named entity
recognition, sentiment analysis, natural language generation, text summarization, text clas-

sification,etc.
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3.6.1. Text classification

Text classification is an NLP technique that aims to assign a set of categories or tags to a
set of texts. Assigning categories to documents like news articles, books, web pages etc are
real world applications which are difficult and time consuming to perform manually. A text
classifier takes input, a sentence or a group of sentences and automatically assigns a suitable
category or a set of relevant tags to it. There are generally three broader approaches to text

classification which are explained follows.

3.6.1.1 Rule-based classifier Rule-based approach aims to classify text to a certain cat-
egory using a set of manually designed linguistic rules.

As an example, if we want to classify news articles into two groups: Sports and Economy, we
need to define a certain set of rules beforehand. In this case, we can define lists of words that
define each category such as “cricket”, “football”, “Ronaldo” for Sports and “stock-market”,
“trade”, “monetization” for Economy. Now, whenever we want to classify a new text, we
need to count the number of words in the text belonging to each category and assign the text

to the category with the maximum score.

A disadvantage of this approach is that it’s extremely difficult and impractical to create a list

of words that can generalize to a large set of sentences belonging to that particular category.

3.6.1.2 Machine Learning based classifier Machine learning can be used to classify a
text into a certain category which requires a labelled dataset in order to build a classification
model. A certain number of data points pre-labelled into suitable categories must be trained
using an appropriate machine learning algorithm which can later be used to classify new

sentences.

The first step in building a machine learning based text classifier is to extract features from
the input texts and represent them in the form of vectors. A classic algorithm used for feature
extraction in texts is TF-IDF which is a statistical measure to identify the importance of each

word in a set of documents.

Finally, we can use one of the ML algorithms like Naive Bayes, Support vector machines

(Support vector machines (SVM)), etc. as per our requirement.
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3.6.1.3 Deep Learning based classifier Different versions of neural networks are widely
used for NLP and eventually for text classification. The advantage of using deep learning
is that neural networks automatically learn the features from the data so it eliminates the
necessity of hand-engineering the features as in machine learning. RNNs are widely used for
sequence data and have been applied to various tasks of Natural language processing. LSTM,
atype of'is are very popular for NLP tasks like text classification . LSTM has multiple hidden
layers and it performs well in memorizing the important relevant terms in the input text thus

can be very useful for text classification.

An alternative and a better approach over RNNs is the use of transformer models for text
classification. The parallelization ability in transformers make it extremely fast and effective
over LSTMs. Besides, transformers use self-attention mechanism to better understand the
semantics of the input text, so they produce good results in text classification. We can start
with transformer models like BERT [25], initialize classification layers on top of it as per our
requirement and finetune the model on our dataset. This simple step can be very effective for

the purpose of text classification as well as other NLP tasks.

3.7. Language Model (LM)

Language models assign probability to a sequence of words. The assignment of these prob-
abilities may be to a word or an entire sentence. Simpler n-gram assume that the probability
of an occurrence of a word is based on the previous n words. As a language model is trained
on larger texts, the number of unique words increase, and with it, the number of possible
sequence. This means that a distributive, non-linear approach to language models is better
suited for large corpus which gave rise to feed-forward and recurrent neural networks being
used for this purpose. Language models are used for a variety of tasks ranging from semantic
analysis to paraphrasing. On speech recognition systems, where noisy ambiguous input is
a norm rather than an exception, it helps identify correct words through probabilities with
context. For a speech recognition system, it is very difficult to distinguish -aeT 8} & &Y
and diF/geT &R 9¥RT . Language models can be useful in this case because quite clearly, the
former has a higher probability of occurrence than the latter.
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4. SYSTEM DESIGN

4.1. Requirement Specification

4.1.1. Functional requirements

Functional requirements are the functions that must be present in the designed system. It can

be viewed from system side itself as well as from the user’s side.

System side

1. The system should be able to take audio as input and provide corresponding text as

output.

2. The system should be able to take audio as input and provide suitable categories to

which it belongs as output.
3. The system should be able to take audio/video as input in multiple audio formats.

4. The system should be able to take Uniform Resource Locator (URL) of audio as input.

User’s side

1. User should be able to get corresponding transcriptions of given audio.
2. User should be able to get the categories to which given audio belong.

3. User should be able to access the system from different regions provided that connec-

tion exists.

4.1.2. Non-functional requirements

Non-functional requirements are the requirements the specify the quality requirements of the

system. Non-functional requirements of the system can be viewed under following topics.

1. Performance: It defines how fast the system responds to the user’s actions.
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4.2.

4.2.1.

4.2.2.

Availability: The system should be available to users when they require it.

. Fault tolerant: The system should be fault tolerant and should be prepared for crash

recovery.

. Scalability: With increasing users and data, system should have capacity to scale as

needed.

. User friendly: The system should be easy to use and interface should be as simple as

possible.

Hardware and Software Requirements

Hardware Requirements

Server: A server is required for training models for ASR and text classification. Cen-
tral Processing Unit (CPU) with 16 GB ram and Graphics Processing Unit (GPU) of 8
GB or more is good enough for training.

Personal Computer (PC)s: The system needs PC with web browser to run web inter-

face. The PCs should have capabilities to ssh to remote servers.

Audio recorder: Audio recorder can be used to collect audios which can be required

for testing purposes.

Software Requirements

Operating System: The models as well as the application will need an Ubuntu OS or

any other Linux distribution.

Database System: Any Structured Query Language (SQL) database to store audio
data but the database can be implemented well with suitable Not only Structured Query
Language (NoSQL) database to make the system capable of handling storage of large

amount of data if needed.
Web Browser: The application will be supported by any web browser.

Other utilities: Programming language compilers and interpreters, git, suitable Inte-
grated Development Environment (IDE) for editing, ssh or similar remote connection

protocol.

22



4.2.3. Other Requirements

* Internet connection

4.3. Feasibility Assessment

Our project is concerned with building the system for ASR and audio classification for Nepali
language, thus includes multiple subsystems. Feasibility is one of the factor that needs to be
studied before starting on working any projects. It helps to shape the work flow and provides
proper direction to achieve goals of the project. We assessed different types of feasibility
before deciding to work on the project on the basis of output obtained from feasibility study.

Various fields of feasibility assessment that we conducted are described below.

4.3.1. Technical Feasibility

Technical feasibility helps to know whether the system proposed can be designed and com-
pleted from technical point of view. Proper study of technical feasibility helps to know about

the best selection that can be done for the project.

The technological components that are required for the development and operation of sys-
tem were found be be manageable and easily available. The tools and frameworks for the
development of system we proposed are open source components which makes the project

technically feasible and even offers multiple choice for development as planned.

4.3.2. Operational Feasibility

Operational feasibility helps to know about the operating environment and it’s resource re-
quirements. It is concerned with whether or not the project will be operable after its comple-

tion.

The system designed should be used to obtain transcriptions and classify the audio based on
transcription into one or more categories. Since the website will be running on the web it
is necessary to handle multiple users request simultaneously. Due to the limitation in hard-
ware we can adjust it to serve one request at a time by maintaining queue. It can be scaled

accordingly if required.
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4.3.3. Economic Feasibility

Economic feasibility helps to know whether the cost required to build the system is feasible
or not. Unnecessary costs should be avoided and optimal cost should be allocated for the

system design and development.

The system requires hardware for training a model. After training, model is loaded into the
system and the system is hosted in a server. Both seem economically feasible to us. Though

not the best, we have those resources to keep us going.

4.3.4. Legal Feasibility

Legal feasibility deals with whether the system lies within the legal boundary defined by the
governing bodies. It must consider and follow things such as copyright policies and license

requirements.

The components(data and models) used in system are either developed by ourselves or they
are open sourced components with license that allows to use their work giving proper attri-

bution.

4.3.5. Scheduling Feasibility

Scheduling feasibility helps to know whether the time period available is enough to complete

the system.

The scheduling of system design and development was designed before starting the project

to complete the project within the total available time.
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4.4. Unified Modelling Language (UML) Diagrams

4.4.1.
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Figure 4.1: Use case diagram
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4.4.2. Sequence diagram
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Figure 4.2: Sequence diagram
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4.4.3. Activity diagram
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Figure 4.3: Activity diagram
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5. METHODOLOGY

5.1. Nepali Speech Transcript Generation and Classification System

Web Application
" N Url
LUrl : :
_ - Web Client Web Backend
Tags and Transcripts < 4
< Tagsand
Transcripts & 4 N Audio
n ™ [ ri
Tags Transcript | .5
Classieaton ASR Module
Hz Transcript
Machine Learning Pipeline

Figure 5.1: Overall system block diagram

The overall system can be broadly classified into two components: the Web Application and
the Machine Learning Pipeline. A user sends an audio URL with its source via the web
interface and after subsequent processing in the backend, returns the transcriptions and tags
corresponding to the content of the audio. The web interface also offers a dashboard, where
users can go through the news audios with corresponding transcripts and tags and view the
statistics related to keywords and topics that are trending, based on the content uploaded by

the admin. The interface also offers searching based on contents of audio.

The web client sends user’s requests to the web backend. The backend then queries the
ASR module for audio transcripts and then the classification module for tags with the ob-
tained transcripts. The classification module returns the corresponding classification tags.
The transcripts and the tags are returned to the web client for display. They are also stored

in the database, if the logged in user is has admin privileges.

5.1.1. 'Web Application

The overall Application can be explained in terms of the components below:
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Figure 5.2: Web Application Block Diagram

The front end web client has been developed using ReactJavaScript (JS). It has two interfaces,
one to send a request with URL to the backend that returns the transcripts and tags of the
audio corresponding to the URL as response and also the other metadata related to the audio.
The other interface displays all the audios and corresponding tags and transcripts from the

database.

The web server has been developed using FastApi. It accepts HyperText Transfer Protocol
(HTTP) POST request from the client with URL and source of the audio, queries ASR model
for transcripts and requests classification model for classification tags corresponding the tran-
scripts. It also saves these information in the database, as well as sends them as response to

the client.

An ASR model trained in wav2vec2 framework comes next. A script that is called from back
end takes audio path as an argument and queries this model. It sends Nepali transcriptions of

the audio as a response.

A MuRIL based classification model has been hosted in docker container using tensorflow
serving. It exposes Representational State Transfer (REST) Application Programming Inter-
face (API) to query the model. The backend sends a POST request with a text and receives

a response with corresponding tags.
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Sqlite database has been used to store information about audio data. Each data point currently
has following information when being saved to the database: Id, Title, URL, Tag, Transcript,
Date.

5.1.2. Machine Learning Pipeline

Automatic Speech Recognition Pipeline
) . Represen- — Raw | -
Representation tations transcription Decoder
Audioc > Learning base CTC Head : + g ITANSCIIPL
model Language Model
f Transcript
T d |
I
R
MuRIL Model for S
Text Representation Classification Head Tags
Text
Representation
Text Classification Pipeline

Figure 5.3: Machine Learning Pipeline

The machine Learning Pipeline consists of two major components: ASR Pipeline and the
Text Classification Pipeline.

The ASR pipeline consists of a model trained with a projection head on top of a wav2vec2.0
based pretrained model using CTC training. The model maps each step in the down-sampled
version of the input to a character in the vocabulary. The output thus obtained is passed to

the Inference block to obtain appropriate transcripts.

Text Classification Pipeline consists of a model trained with a classification head on the top
of the MuRIL Model. The MuRIL model gives text representations that are classified by the

classification head to give the output as one or more suitable categories.
The models used in the ML Pipeline have been explained in detail in the next section.

The detail about each of the steps comprising the ML pipeline have been explained from
section 5.3 t0 5.9
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5.2. Machine Learning Models

5.2.1. Model for Speech Representations: wav2vec 2.0

The wav2vec 2.0 framework proposes learning contextualized representations together with
an inventory of quantized speech representations, substantially bettering results. Prepro-
cessed audio is taken as input and converted to latent speech representations, which are then
used to build contextualized representations. Furthermore, the latent speech representations
are converted to quantized speech representations to represent targets for the self supervised
task. Wav2vec 2.0 has two configurations: BASE and LARGE. We utilize the BASE con-

figuration. The wav2vec 2.0 model is divided into following architectural blocks.
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Figure 5.4: Wav2vec 2.0 architecture. The figure shows how a sample audio of 30 seconds
with sample rate 16000 Kilo Hertz (KHz) is passed onto various layers of the model and
outputs representations of 256 dimensions for each timestep.
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5.2.1.1 Feature encoder The feature encoder consists seven blocks of 1 Dimensional
(1D) convolutional layer with each block consisting of 512 channels. The convolution block
is followed by layer normalization and Gaussian Error Linear Unit (GELU) activation func-
tion. The strides of the first convolutional block is 5 while that of the remaining block is 2.
Likewise the kernel width for the seven blocks can be represented as (10,3,3,3,3,2,2). Each
latent speech representation output by the feature encoder encompasses 25 millisecond (ms)
of input signal, with a stride of 20 ms between each sample, i.e the input speech representa-
tions are down-sampled such that each 25 ms of the input represents one unit in latent space,
with stride of 20 ms between the starting point of each sample in input space. The output of

the feature encoder is dropped out at a rate of 0.1.

5.2.1.2 Transformer Thewav2vec2.0base configuration consists of 12 transformer blocks
with a model dimension of 768 and 8§ attention heads. The encoder layer dropout is kept at
0.05. The architecture utilizes convolutional layer instead of fixed positional embedding

which acts as relative positional embedding.

5.2.1.3 Quantization module Quantization module performs discretization of feature en-
coder’s output to a finite set of speech representations. The quantized representations are
chosen using product quantization, which involves choosing codewords from multiple code-

books and concatenating them.

The BASE configuration is trained on 960 hours of Librispeech ASR corpus. The dataset
is derived from audiobooks that are part of the LibriVox project and consists of 1000 hours
of speech sampled at 16 KHz. The training split is partitioned into 100, 360 and 500 hours
of data. The first two sets is on average of higher recording quality with accents closer to
US English through a simple automatic test. The speakers in the corpus were ranked, with
the lower WER speakers designated as “clean” and the higher WER speakers designated as
“other”. From the “clean” pool, 20 male and 20 female speakers were drawn at random and
assigned to a development set. The same was repeated to form a test set. For each dev or
test set speaker, approximately eight minutes of speech are used, for total of approximately

5 hours and 20 minutes each[31].

5.2.2. Model for Speech Representations: CLSRIL-23

Multilingual pretrained model is present only for wav2vec 2.0 Large architecture. Indic lan-

guages contribute a very small portion to the 53 languages on which the cross lingual rep-
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resentations are learnt in the multilingual pretrained model [21]. Meanwhile, only mono-
lingual model trained on English language is present for the wav2vec 2.0 Base architecture
[20]. CLSRIL-23 is a self supervised based audio pretrained model which learns cross lin-
gual speech representations from raw audio across 23 Indic languages. It is built on top of
wav2vec 2.0 base architecture on 10000 hours of audio [22]. The 10000 hours include about
30 hours of Nepali data from All India Radio. A detail on the distribution has been given in
Appendix 10.2

5.2.3. Model for Text Representations: MuRIL

In order to classify the text obtained from the ASR pipeline, we use MuRIL [27] which uses
a BERT Large architecture [25] pretrained on 17 languages including English. The model
makes use of transformer’s encoder part with attention mechanism to learn contextual rela-
tions between words in a given text. The BERT large architecture consists of 24 encoder
blocks and a total of 340 Million (M) parameters. MuRIL is pretrained on 17 languages, one
of them being Nepali language. MuRIL is pretrained using two language modeling objec-
tives: Masked Language Modelling (MLM) and Transistional Language Modelling (TLM).
In both of these cases certain words in the input are masked before sending to the model and
the model is trained with the objective of minimizing the loss while predicting these mask

tokens.

In our case, we use the pretrained MuRIL model and finetuned it for our task of text classi-
fication. For this purpose, we add a dropout layer with dropout value 0.6 and a final dense
layer with sigmoid activation of dimension 5, corresponding to the number of classes for

classification.

The detailed architecture of the model we used is illustrated in figure 5.5
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Figure 5.5: Model architecture for classification built on top of MuRIL

short For an input sequence, we obtain a pooled output of 768 dimension from the MuRIL
model which gives the contextual representations for that particular input sequence. Then,
this output is passed to the classification layer which finally outputs a 5 dimensional vector

giving the prediction for each of our classes.

5.3. Dataset acquisition

5.3.1. Speech Data with transcriptions from OpenSLR dataset

We used open source Nepali dataset with audios and corresponding transcripts from OpenSLR,
a site devoted to hosting speech and language resources. The transcribed audio consists of
157,905 utterances from 527 speakers amounting to 165 hours[32]. Audios in this dataset are

already in the required format. So, no preprocessing was needed for the audio of this dataset.
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5.3.2. OpenSLR female dataset

This dataset contains high quality transcribed audio data for Nepali[33]. A catalogue showing

information about this recorded audio is shown below.

Gender Female
Speakers 19
Audio samples | 2064
Total duration | 02:47:45

Table 5.1: Data distribution for OpenSLR female dataset

5.3.3. 074BCT Dataset

This dataset comprises labeled speech data of 21 individuals from 074 batch of Computer
Engineering students from Pulchowk Campus, Institute of Engineering, Tribhuvan Univer-
sity, Nepal. The speakers comprise of 19 males and 2 females with each speaker recording

audio for 30 different transcriptions amounting to a total of 630 labeled audio samples.

5.3.4. Text Classification Data

I However, for our

For this purpose we’ve used the publicly available Nagarik corpus
purpose, we’ve used only 5 categories: “Sports”, “National”, “International”, “Health” and
“Economy”. We’ve extracted individual sentences from the subset of news corpus for each
of the five categories and used the corresponding sentence as a single data sample for our
dataset. Following this process, we built a dataset containing a total of 22500 data with the

following distribution.

Category | Number of sentences
Sports 4500
National 4500
International 4500
Health 4500
Economy 4500
Total 22500

Table 5.2: Distribution of sentences in different categories

'Source:https://github.com/ashmitbhattarai/Nepali-Language-Modeling-Using-
LSTM/tree/master/Nepali_Corpus/Nagarik
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54.

5.4.1.

Data Preprocessing

Audio Preprocessing

Before feeding the audio data to models for pretrainig, data should be preprocessed with

following steps as per need:

L.

2.

5.4.2.

Segment the audio into 30 seconds(maximum) each.

The background music should be then removed from the audio.

. The silence contained in the audio, should be then removed by specifying a threshold

decibel value.

The audio needs to be sampled at 16 KHz and any stereo stream should brought down

to a mono channel.

Text Preprocessing

The data from OpenSLR used for finetuning contains text with punctuation marks and num-

bers. Since CTC algorithm maps time stamps that represent units of sound to characters, we

can not use digits as characters in our vocabulary. Instead, we must first convert those num-

bers to words in our transcript. For this, we followed the following steps for the conversion

and cleaning:

. We first mapped all Nepali digits in our corpus to English and then made a list of all

numbers in our corpus using regex.

. After that, we used a script to get Nepali word corresponding to all those numbers and

saved the mapping from Nepali numbers to words for every number in corpus in a key

value pair data structure.

. Then, we used regex to replace all the numbers to corresponding word mapping.

We also dropped all the punctuation marks from our text.

Below are some examples of how raw uncleaned texts were pre-processed to from clean texts

with digits replaces by words and punctuation marks removed:
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Raw text Preprocessed text

23%% ST et Qeh BoTR Yeh §Y U=ITssl SYTHT et

gaIiehT BT GR SMTATS UG Thix 9 g od! | el HRT Gk SMTATT AGhTA thix 9 g ot

Table 5.3: Preprocessing of texts

5.5. Tools and technologies used

5.5.1. Automatic Speech Recognition (ASR)

+ fairseq, a sequence-to-sequence learning toolkit for Torch tailored for Neural Machine

Translation from Facebook Al Research.
* Torch, a scientific computation network framework and a machine learning library.
* NCCL backend for distributed NVIDIA GPU training.

* Compute Unified Device Architecture (CUDA) toolkit includes GPU accelerated
libraries, debugging and optimization.

* wav2letter and KenLLM for decoding and language model.

5.5.2. Classification

» TensorFlow, an end-to-end open source platform for machine learning.
* CUDA toolkit, includes GPU accelerated libraries, debugging and optimization.

* Docker for serving the model using REST APIs in an isolated container.

5.5.3. Web Application

* React, a front-end JavaScript library for building user interfaces based on User Inter-

face (UI) components.
» FastAPI, a web framework for developing RESTful APIs in Python.

* SQLite, a lightweight database engine.
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5.5.4. Miscellaneous

* Python, Java and Shell scripts for manipulating input in different stages of the ASR

pipeline.

5.6. ASR: Pretraining self-supervised learning models for speech Representations

For pretraining using the wav2vec2.0 framework described in the 5.2.1, the raw audios (X)
first need to be in the format specified in the 5.3. So audio data, which are of 30 seconds
at maximum in length and 16 KHz frequency with mono channel are organized in batches
after splitting into test, validation and training sets and fed to the feature encoder with 7
convolution blocks, which outputs latent representations of the given data, Z, such that X —
Z. Those latent speech representations, Z are then quantized to give quantized representation,

Q using G codebooks with V entries in each.

The latent space representations, Z are also fed to transformer, by masking certain portion
of input using mask tokens. This masking is governed by two hyperparameters p and L. All
the time steps are randomly sampled without replacement with probability p to obtain the
starting indices and then L consecutive time steps from those sampled index are masked,
allowing masked spans to overlap. The transformer then outputs the contextualized speech
representations, C. Hence, the same input X, is transformed in two different ways, one to give
quantized representatiosn Q and the other to give contextualized speech representations C.
This flow of input through the model has been demonstrated in figure 2 5.2.1, with an audio

input of 30 sec as example.

The contrastive task the transformer performs during the training is to identify true quantized
latent speech representation g;€ Q, given the context network output c;€ C centered over
masked time step t. For the purpose, K+1 quantized candidate representations, containing K
distractors uniformly sampled from other masked time stamps in the utterance and one correct
sample qt are used. Here, K is a tunable hyper-parameter. The loss function corresponding

to this process has been explained below:

5.6.1. Loss Function

During pre-training, representations of speech is learnt by solving a contrastive task as ex-
plained above. With that, another loss called Diversity Loss is also added to ensure that a

large portion of the codebook is used by the model while training. Similarly, third loss called
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Features Penalty is also used to stabilize the model. So, the objective function is the weighted

sum of these three losses, given by:

Lioral = Leontrastive + aLdiversity + }/L features_pen (5 1)

where « and 7y are tunable hyperparameters.

Contrastive Loss (Loss_0) The contrastive task in the pretraining involves identification
of true quantized latent speech representation g, given the context network output ¢; centered
over masked time step t, given K+1 quantized candidate representations, with K distractor

samples and one correct sample g;. So, the contrastive loss is given by:

ecosine_similarity(q, )]k

Zq'EQ ecosine_similarity(g;,c;)/k
l

(5.2)

Lconlraslive = _log

Diversity Loss (Loss_1) As explained above, the contrastive loss uses codebook to sample
both positive and negative examples. Diversity Loss encourages equal use of all codebook
entries in that process. If G codebooks, with V entries each have been used, diversity loss is

the negative of entropy calculated over all codebook entries.

Q

1 |4
Ldiversity = E Z pg,vl0gpg,v (53)
g=1v=1

Features Penalty Loss (Loss 2) It is the mean of square of the features extracted from
CNN, i.e. the latent speech representations, Z. This parameter is mostly to stabilize the model
to prevent it from crashing late in training. It has very little effect on final accuracy and

contribution to the total loss function.

Lfeatures_pen - Mean(Square(Z)) (5:4)

5.7. ASR: Finetuning

The representations learned from the pretraining phase are then used in the downstream task

of automatic speech recognition of Nepali language.

The labelled data for the task is first split into train, validation and test set. After cleaning the
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data as explained in 5.4.2, since the CTC algorithm models the output sequence character-
wise, it is required to convert the transcriptions of the dataset into individual character/tokens.
So, the entire transcriptions was converted into individual characters. For that, we first con-
verted the sentences into a file with individual words, separated by a special token ”” to

denote space, which is used later on for building Language Model for inference 5.8.

As an example the Nepali sentence "IEHT ATART TRY! fIAT" would be converted into "T
g1 | gRTga | 7R gdH o7 | gf2 g} | ". Next we build a vocabulary representing
the number of occurrences of each individual tokens in our dataset. We observed that there
were a total of 67 classes of characters in our dataset including the separator token “|”. The

five most frequent characters in our dictionary are as follows:

Character | Total occurrences
| 474849
| 271135
Y 216832
4 185596
q 153826

Table 5.4: Top 5 characters and their occurrences in our dataset

The fine-tuning is carried out by adding projection layer on top of the context network for
mapping the transformer outputs into 67 classes representing the number of characters in
the vocabulary. This maps the representations from transformer into 67 dimensions for each
timestamp corresponding to the contextualized speech representations, ¢;. The resulting out-
put represents the probability distribution for each character in our vocabulary. Then, the

model is trained to optimize the CTC loss.
5.7.1. Loss Function

To train a CTC-based ASR system, we use CTC loss function that is given by the sum of the
negative log-likelihoods of the correct output Y for each input X over the dataset D.

Lere= Y, —logPerc(Y[X) (5.5)
(X.Y)eD

To compute this loss for a single pair of output Y given input X, we need the probability
Perc(Y]X). As we saw in 3.5, to compute the probability of a given output Y we need to

sum over all the alignments that can collapse to output Y. So, that probability is given by:

Perc(Y|X) =Y. Lipi(alX) (5.6)
AEAX7Y
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Figure 5.6: Steps of OpenSLR algorithm

Here Ay y indicates the set of all the valid alignments for X that collapse to Y and a; represents

probability of an alignment A at time step t. Using the trained model, given input sequence
X = [x1,x2,...,x7]
can thus be mapped to an output sequences

Y = [y17y27' .- 7)’U]
1.e. the characters for the transcript of the audio.

Figure 5.6 shows how the text is generated by a pass through the model by generating align-

ments in the intermediary step.

5.8. ASR: Inference

The OpenSLR trained speech recognition model thus maps vector corresponding each timestep
from the context network to a character in our vocabulary, i.e. each timestep in the output
sequence to a (1, 67) vector, 67 being the number of characters in our vocabulary. The output

of the network looks like Figure 3.7.

So, the output can be visualized as a 2d matrix, with probability distribution over all the

characters in the vocabulary, for each time step t along the X-axis.

As explained in 3.5.2, greedily decoding the output doesn’t consider the fact that a single
output can be obtained from multiple alignments. So we have used modified beam search
algorithm which overcomes the limitations of greedy search. A n-gram word level language
model has also been used along with beam search. So, the score given to an output also
incorporates LM score whenever a word is inserted in the decoded output with & score which
is a hyperparameter, representing the weight given to Language Model score. The LM has

been built using KenLM. The decoding has been implemented using python bindings from
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flashlight library.
5.9. Text classification

The Nepali text obtained from the ASR model is then passed onto the classification pipeline
built on top of MuRIL model. The detailed architecture of the classification model is ex-

plained in
5.9.1. Objective Function

The problem of text classification has been solved by training with an objective of minimizing

the categorical cross-entropy loss function which corresponds to the following equation.

C
Y yelog(ye) (5.7)
lce=1

&
2I~
™M=

i

where:

N = number of data samples,

C = number of classes,

ve = True output label for class c,

v = Predicted probabilities for class ¢

However, in our implementation we use a loss function called sparse categorical cross-entropy
which is a computationally efficient version of categorical cross-entropy due to the fact that
it uses a direct class value as input instead of one-hot encoding over the classes. For example:
For 4 classes problem, if the true output for a data is class 2, categorical cross-entropy takes
the input as [0,0,1,0] while the sparse categorical cross-entropy takes the input directly as the

class value, in this case 2.

5.10. Evaluation Metrics

5.10.1. Pretraining

The objective function and evaluation metrics used during pretraining explained in 5.6 are

described below:
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Accuracy Accuracy in the context of pretraining refers to the percentage of total quantized
latent speech representation for a masked time step that the model is able to identify correctly.
Total True Positives

A = 5.8
couracy Total Samples Observed (5-8)

Accuracy during pretraining and performance on downstream task are not always correlated.
So, evaluation of model and stopping decisions cannot be solely made on the basis of accuracy
only. So other metrics are also recommended to be used which have been described in the

sections that follow.

Code Perplexity It is a measure of randomness while choosing codes from codebook. It
is the exponentiation of negative entropy calculated over hard probabilities(one hot vectors)
of codebook indices. It gives what percentage of the codebook is used at the instant by the
model. Too low value of this would mean the model is focusing on few codes only from the
codebook. Too high value indicates instability. To evaluate if a model is performing well, it

should increase and reach upto 100-500 and then saturate.

Prob Perplexity It is a measure of randomness while choosing codes from codebook, sim-
ilar to code perplexity. Only difference being, it is the exponentiation of negative entropy

calculated over softmaxed average probability of codebook indices.

5.10.2. Finetuning

The objective function and evaluation metrics used during finetuning for the downstream

task of speech recognition explained in 5.7 are described below:

Word Error Rate It is the standard evaluation metric for ASR systems. It is the minimum
edit distance between two strings, one being the test string and the other being the correct
string, which is the minimum number of substitutions, insertions, and deletions of words

necessary to map the test string to the correct one. The Word Error Rate (WER) is given by:

Num(Insertions) + Num(Substitutions) + Num(Deletions)
Total no. of words in the correct string

100 =

(5.9)

Character/ Utterance Error Rate It is the minimum edit distance between two words,

one being the test word and the other being the correct, which is the minimum number of
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substitutions, insertions, and deletions of characters necessary to map the test word to the

correct one. The Character Error Rate (CER) is given by:

Num(Insertions) + Num(Substitutions) + Num(Deletions)

100 %
Total no. of characters in the correct word

(5.10)

5.10.3. Text Classification

Accuracy Accuracy is simply the percentage of correct predictions the model makes. It
describes how the model performs on all the classes. In our case of text classification, it
indicates the fraction of the total number of data samples the classification model makes
correct prediction.

A Number of correct predictions (5.11)
ccuracy = .
Y Total data samples in the set

Precision and Recall Precision indicates what proportions of positive predictions are actu-
ally correct. Recall on the other hand indicates what portions of actual positives was identified
correctly for the model. Often, accuracy is not able to truly evaluate a model’s performance
as it gives a measure over the entire classes. In cases of imbalanced dataset, accuracy isn’t
a good metric of evaluation. In such cases, Precision and recall are needed as it gives the

performance evaluation for each of the classes in our dataset.

TP TP
Precision = ————,Recall = —— (5.12)
TP+FP TP+FN

where:

TP = True positives

FP = False positives
TN = True negatives

FN = False negatives

For example: In our case of text classification, for a category “Sports”, a precision of 0.8 in-
dicates that only 80% of the predictions that are classified “Sports” are actually so. Similarly,
a recall of 0.8 indicates that only 80% of the text that are actually “Sports” are classified as
“Sports” by the model.
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F1-score Fl-score is the harmonic mean of precision and recall. It aims to combine preci-

sion and recall into a single metric.

Precisi Recall
Flscore =2 % rec.ls.mn *ecd (5.13)
Precision + Recall

5.11. Experimental Setup

5.11.1. Dataset

For ASR, we used the OpenSLR Nepali dataset(5.3.1) for both, pretraining and finetuning.
The dataset was first split into train, validation and test sets in the ratio of 96:2:2. For pre-
training, we used the train and validation sets only, because there is no meaning to test just
the pretrained model, not finetuned for any task. Whereas for finetuning, we used all the data,
1.e. the train and validation set during training and the test set to evaluate the performance
of the trained model. Besides, OpenSLR female dataset( 5.3.2), 074BCT dataset( 5.3.3) are

also used for testing purpose to evaluate the performance of ASR model.

For text classification, we use the dataset as stated in 5.3.4. The dataset consist of 22500
sentences belonging to a total of 5 categories which is split into 70:15:15 as train:valid:test
set.

5.11.2. Training

Pretraining For pretraining, we have used the wav2vec2.0 framework. While training, we
have trained two different models with all the other configurations the same but with two
different model checkpoints to start from: one starting from the wav2vec2.0(5.2.1) and the
other from the CLSRIL-23( 5.2.2). While training, Adam optimizer with adam_betas (0.9,
0.98) with adam_eps 1e-06 is used. Initial learning rate of 0.0005 is used, which is set to
increase linearly to reach 0.005 in 32,000 warmup updates, with weight decay of 0.01 using
polynomial decay after that point. For losses described in 5.6.1, the weight factors o=0.1
and y=10 are used. The default setting of G=2 and V=320 is used for quantization module(
5.2.1.3). Masking probability p=0.065 and masking length M=10 is used.

For pretraining we use 2 GPUs, NVIDIA 1080 and NVIDIA 1070Ti with distributed world
size of 2. Training was continued until the code perplexity was seen to saturate, without

dropping accuracy much compared to the best accuracy. This resulted in training for 30,000
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updates. Training took about 161 hours.

Finetuning Finetuning of the pretrained models was done by adding a projection head on
top as described in 5.7. The weights of feature encoder (CNN blocks) trained during pre-
training were frozen. Learning rate of 0.00003, adam optimizer with adam_betas (0.9, 0.98)
and adam_eps of 1e-08 was used. Masking probability p=0.65 is used for masking of fea-
ture encoder outputs as described in SpecAugment[34]. Finetuning of the model is done till

validation WER and CER continues to decrease.

For the finetuning we used 2 GPUs, same as for pretraining. Finetuning was done for more
than 100,000 steps till no improvement was seen in WER and CER, which took about 154

hours.

Text classification Text classification model was trained using the data described in 5.3.4.
The dropout value for the dropout layers is set as 0.6 . The training is done in batch sizes of
16 with an objective to minimize sparse categorical cross-entropy. The optimizer used in this
case is AdamW. AdamW [35] is a slight modification of Adam optimizer which implements
weight decay differently. The classification model is trained for 10 epochs with a learning

rate of 3¢,
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6. RESULTS

6.1. Automatic Speech Recognition

Through our experiments, we tried to analyze how the idea of learning speech representations
through unsupervised pretraining in order to improve the performance on downstream tasks
(ASR in our case) works for Nepali Language. We also wanted to see how low resource
languages like Nepali can benefit from sharing of low level speech representations across

different languages.

Besides, we have also tried to compare the improvement in performance on downstream task
of ASR while using a model pretrained on multilingual corpus of Indic Language, CLSRIL-
23(5.2.2) versus using the a pretrained on English language only, wav2vec2.0(5.2.1). This is
to verify if low level speech representations across languages of similar origin and locality

are more similar, giving a better performance.

We have also conducted small experiments to see if adding unsupervised pretraining with
Nepali data to the pretrained models before finetuning for the downstream task has any impact
in performance. If so, it can indicate some space for further improvement of Nepali Speech
Recognition by pretraining on enough unlabeled Nepali data that would be fairly easy to
collect compared to transcribed data. We have also tried to see how the incorporation of LM

in decoding transcripts during inference improves the results.

With the objectives mentioned above, we have trained four different models in total. We had
two pretrained models, CLSRIL-23(5.2.2) and wav2vec2.0(5.2.1). We developed additional
two pretrained models by adding unsupervised pretraining on each of these models using
OpenSLR Nepali dataset(5.3.1). So this gave us four model checkpoints to start finetuning
for ASR.

We continued the training until validation probability perplexity of the models became stable,
without significant drop in accuracy. But we can not draw conclusions about these models
until we evaluate them on a downstream task. So in the sections that follow, we have analyzed
these models based on their performance in the task of ASR. We have included the training

logs for pretraining in Appendix-B(10.2).

For finetuning, we trained the four different models with all the other configurations the same
but with four different model checkpoints to start from as explained above. We trained all

four models until the validation WER started showing no further improvement. The training
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results of these models based on their performance on validation set are summarized in the

table and graphs below:

Models

W2V _FT
C23 FT
W2V PF
C23 PF

Train
WER CER
12.41 2.38

1.2 2.18
11.39 2.26
10.54 2.12

Table 6.1: Training Summary for different models. W2V_FT is the model we finetuned from
wav2vec2.0’s checkpoints, C23 FT is the model we finetuned from CLSRIL-23’s check-
points. W2V_PF is the model we finetuned after adding pretraining to wav2vec2.0’s check-
points. And finally C23 PF is the model we finetuned by adding pretraining to CLSRIL-23’s

checkpoint.

Word error rate
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0 20k 40k 60k 80k 1004
Number of updates

Character error rate W2V_FT c23 FT
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Figure 6.1: Comparison of finetuning metrics in 5.10.2 of W2V_FT, C23 FT, W2V _PF and

C23_PF in the validation set
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The models developed with pretraining before finetuning show slight improvements in vali-
dation WER and CER. Although, the final obtained WER are not much different from each
other, the nature of decrease in WER is different. Models with added pretraining got to good
WER in lesser number of epochs. This is probably because during pretraining the models
already capture a lot of representation from training data so learning during finetuning be-
comes faster. We need to compare the models based on their performance in test sets too
see if this has led to better generalization capabilities or the model has just overfit on train
and validation set, giving lesser validation WER. It is an understood phenomenon in ML that
models tend to perform well in the test split from the same distribution as train set than a

different test set. So to assess the models better, we have used two additional test sets also.

So in overall, we evaluated all four models with three different test sets:

1. The test split of the OpenSLR dataset(5.3.1) as explained in (5.11.1)
2. OpenSLR female Dataset(5.3.2)

3. 074BCT Dataset(5.3.3)

During Inference, we experimented with multiple n-gram models using the model that per-
formed best without LM. All n-gram models showed similar performance. The 5-gram model
showed slightly better results among the n-gram models(10.2), so we chose 5-gram LM to
proceed with.

The WER and CER of all four models in each of the datasets have been summarized in table

below:
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Test Dataset
Model LM OpenSLR test | OpenSLR female 074BCT

WER CER | WER CER WER CER
No 14.0 281 | 29.6 6.19 49.97 11.79
5-gram A | 233  0.78 | 26.92 7.38 4398 1243

W2V _FT
- 5-gram B | 21.58 4.34 | 29.03 7.24 43.04 10.78
5-gram C | 240 0.75 | 23.07 5.99 42.37 10.79
No 12.13  2.47 | 28.94 6.17 49.95 11.37
P S5-gram A | 2.14 0.67 | 26.53 7.95 42.64 11.83
B 5-gram B | 20.95 4.37 | 28.39 7.81 42.24 10.11
5-gram C | 2.16  0.65 | 23.05 6.54 40.98 10.16
No 12.14 248 | 34.70 9.37 52.56 14.54
S5-gram A | 2.56 0.72 | 29.00 10.58 | 45.66 15.20

W2V _PF
- 5-gram B | 21.11 4.10 | 31.69  10.54 | 44.00 13.09
5-gram C | 2.63 0.75 | 26.03 9.45 43.52 13.34
No 11.81 228 | 32.51 7.56 53.77 14.51
23 PE S5-gram A | 2.24  0.68 | 28.01 9.03 4743 15.71
- 5-gram B | 20.78  3.99 | 30.02 9.04 44.86 13.46
S5-gram C | 2.52  0.72 | 24.42 7.80 4491 13.76

Table 6.2: Result of different models on test sets. The best result for each of the dataset has
been highlighted in bold. W2V _FT is the model we finetuned from wav2vec2.0’s check-
points, C23 FT is the model we finetuned from CLSRIL-23’s checkpoints. W2V _PF is
the model we finetuned after adding pretraining to wav2vec2.0’s checkpoints. And finally
C23 PF is the model we finetuned by adding pretraining to CLSRIL-23’s checkpoint. Among
the 5-gram models, A is made from our train set transcriptions of OpenSLR, B is made from

86k sentences from Nagarik corpus®and C is made from the combination of the two.

Form the table above, C23 FT has the best overall result in CER and WER, with C23 FT
and W2V_FT having very similar scores. C23 PF and W2V_PF have better overall results
among all the models in the test split of OpenSLR dataset in some cases when comparing
models without LM or with LM made of data that doesn’t have OpenSLR dataset. But
they have worse results in other two test sets in almost every case. Even in the test split of
OpenSLR dataset, when comparing models by using LMs with OpenSLR dataset, C23 FT
and W2V_FT have better overall results. So C23 PF and W2V_PF have performed better
in the test split of OpenSLR dataset only in some cases when models are compared using

3https://github.com/ashmitbhattarai/Nepali-Language-Modeling-Using-LSTM/tree/master/Nepali_Corpus
/Nagarik
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LM with no OpenSLR dataset, i.e when the other two models (C23 FT and W2V _FT) have
not seen the data from distribution of OpenSLR’s datset at all. These are the evidences that
C23 PF and W2V _PF has overtfit the distribution of OpenSLR dataset and have not learnt
general representations better. In other two test data sets, C23 FT and W2V_FT have per-
formed better than C23 PF and W2V_PF. Again, C23 FT has slightly better overall perfor-
mance than W2V _FT indicating that representations learnt during pretraining in Indic lan-
guages are indeed closer to Nepali than those learnt in model pretrained in English language
only. But both the models have very similar score, indicating that even the pretraining on In-
dic Languages that CLSRIL-23 has undergone has not brought very significant improvement

over wav2vec? for the case of Nepali language.

Another important aspect to analyse from the results is the impact of using LM to decode
the output. In all three test sets and all of the four models, decoding with LM has improved
the average WER and CER compared to decoding without LM, indicating the impact of LM
improving the quality of transcripts. Only in the OpenSLR test split, LM A has better results
than other LMs. This is because the test set and the LM corpus for A come from same data
distribution, despite being different splits. For other test sets, LM B with additional tests other
than that in A, has shown the best performance. The choice among LMs has the least effect
in 074BCT dataset. This is probably the result of the fact that some audios in the dataset are

very noisy and unclear for even us to interpret.

6.1.1. Analysis of some transcripts

The crowd sourced data set[32] and high quality transcribed female data set[33] from OpenSLR
have often used different transcriptions for each speaker. To conduct an empirical analysis,
we create a new data set with 5 speakers, each contributing five audio samples of the same
transcription. The speakers consist of 3 males and 2 females. The analysis is conducted for

the best performing ASR model using different LMs.
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Original Speaker | No LM LMC
37chi d ShtdT= MR 9= | 37ehi Jd ShtdH QTeRT A
3Rl gd ShtdT TR 1 IurfY fSIcHAT Ao UR | U s dem o
o 3Ty fSSHT Jeorg T g TARNSA T | T g TARS,
UR §E g a9, 3pf gd WM YR | TRl Ud R TR
2 il U fSidAT Herg | w1 IuIfe ST Aera
R I g1 FARSF | TR T g IdRo,
gYehl AT O | g ot Tt
SHIUS BEUD | Sl TS  BIEJUs
TYenT ATRY Tt 1 a1 SfeeTHigete a1 RYY | a1 Siegadele a1 RYY
RIS ] ar STy fheeedl 9wl | fE) fihedzed 9w
ar TS THUs ¥
ftheeet T tararc 2 S 1) I
- : : JHAT TR U I
N m
Ue BIgque ar 3fegl
2 a1 3fegl Higere a1 Rey
aget a1 R g
SHATUee & I
- LT o GOl U

Table 6.3: Speakerwise performance on each sentence using no LM and combined 5-gram
LM.?

Upon analysis of result transcripts, it was seen that in many cases, the use of LM has improved
the quality of output transcripts. But there are cases where where LM has incorrectly changed

the transcripts. The two sentences in the table above represent both the cases in output.

In first example, the use of LM seems to have improved the quality of transcripts for every
speaker. We also observed that every word in the first sentence is present at least once in
the corpus the LM is made of. While in the second example, angantuk(derived) words for
Nepali language are present. These words like 3TeeIigele and Ra¥ SAIAY are not very
common and don’t even have consistent pronunciation in Nepali. LM hasn’t been able to
correct errors in these words and phrases. In fact, for Ra<f 3 ¥, LM has changed almost
every occurrence to R 3@, It was seen that 3fegT™igete and Rae SHTRT were not
present in the corpus of LM while R=f 31f9 was.

These representative examples we have chosen show that although LM has improved the

performance of our model, which is even evident from the scores in table 6.1, there are some

SThis result is performed on top of C23_FT model. The words in the original text that are not present in the
LM are highlighted in orange whereas the mistaken words are highlighted in magenta. Speaker 1 is male and
Speaker 2 is female.
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trade-offs. LM has wrongly corrected some transcripts that were actually produced as right
without an LM. Since we have used a simple n-gram LM, it doesn’t do very well with texts
not seen while building it. That is why there has been a lot of mistakes in sentences when
LM has to deal with new and different kind of words.
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6.2. Text Classification

The text classification model for a total of four categories was trained for 10 epochs. The
accuracies for the classification model are listed in table 6.4. As discussed in 5.10.3, since
accuracy isn’t able to evaluate the model’s performance completely, we’ve used precision,
recall and f1-score to analyze each of the categories which is listed in table 6.5. It is seen
that the model performs more or less similar for all the categories. The F1-score is slightly
less for the category “National” due to the diverse types of news that can be grouped under
this category. The confusion matrix in figure 6.3 helps us to evaluate the model even better.
From the confusion matrix, it can be seen that a total of 44 sentences which were actually
“National” were classified as “Economy”. In many cases, the news of these two categories
are similar and can belong to both of the categories. Also, the training set also might have
been inaccurate and disputed in certain cases for these categories. These are the probable
reasons why our model confuses in certain occasions between these two categories. The
accuracy changes and pattern of loss for training and validation set are depicted in figure 6.2
and Appendix-B(figure 10.8) respectively. Detailed logs about training for text classification

are shown in Appendix-B.

Accuracies Value

Training accuracy | 99.05%

Validation accuracy | 92.68%
Test accuracy 92.06%

Table 6.4: Accuracy in text classification

- Precision | Recall | F-1 score | Support
Sports 0.98 0.95 0.96 665
Economy 0.88 0.91 0.90 673
International 0.96 0.94 0.95 656
National 0.88 0.89 0.88 691
Health 0.94 0.94 0.94 690

Table 6.5: Other metrics for text classification

Table 6.7 shows some of the outputs for a set of input texts. The probability score represents
the independent probabilities for each of the 5 classes in the order of “Sports”, “Economy” ,
“International”, “National” and “Health”. As the probability values are independent, we can

obtain more than one categories for a particular input text. The threshold probability we have
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Figure 6.2: Model accuracy vs epoch comparison
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Figure 6.3: Confusion matrix for test set of classification model

set for our application is 0.7. Any category with a probability value greater than or equal to
0.7 is assigned to that particular input text.
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Speaker | No LM A B C
Male 2471 | 39.08 | 25.86 | 26.43
Female | 31.03 | 37.06 | 25.86 | 24.99

Table 6.6: Results of using different LMs on top of best performing model in the same tran-
scription.

Predicted
Input text Independent probabilities .
categories
AT I : A dlelierehl | [0.1949873,  0.27747023,
M us®, wriedl Tad &gt | 0.05792335, 0.9989458, | National
W 0.12741017]
g qur gdee Famuut fadsf
SITSHT 9Ueh! hiHhT HRUT
& 23R [0.12890464,  0.9991125,
ferg T o wTar O B AR 0.10256141 0.25475365, | E
. , . , conom
T gfsufe sramasae a&g Shufy, g
A ~_ | 0.09709752]
S, LTeITd <A dchl ATATd <hI[Xd
T<O |
gt W U gl wAleeld | [0.9993343, 0.17365691,
gNideh TR 9 ThI-Uehl UeT UETe ¥ | 0.15864772,  0.15841866, | Sports
3fteT 318 7T+ et 9T 0.08346665]
0.03934222,  0.99360144,
AurerHr fagdta gat iesgsent [ Economy,
Sifgeich! ST 3w TSI © | 0.14609456, 0-7764218. | \ational
0.16220596]
e Goh=THT SThHUT TRUFS SARAT
R ufgeft degeet S9AIfY v mqanT | [0.19101802,  0.14724657,
& Ufda=e TR hRRUT 9t | 0.99947286,  0.10264364, | International
gl emReMIY ufdser MU | 0.14979446]
et ST ® |
SR Wﬂ ﬂ gl Wﬁ o " | [0.09029514,  0.36342692
! i 10 64512852 ’ 0.282044383 Health
. , . , ea
f309q, SreogmER ST WTETe I
N 0.99888384]
fch=t d27 Ardsii-ieh YT S |
7 [0.10470441  0.05300167
WY (hIfAS-3R) @ Uepluare |~ ' " | International
0.73453945,  0.08375183,
SAFTHAT Yehole HQR AT T Health
0.9987021 ]
TR B |

Table 6.7: Examples of text inputs with their predicted categories and probability values for
each category
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Table 6.7 shows some of the outputs for a set of input texts. The probability score represents
the independent probabilities for each of the 5 classes in the order of “Sports”, “Economy”,
“International”, “National” and “Health”. As the probability values are independent, we can
obtain more than one categories for a particular input text. The threshold probability we have
set for our application is 0.7. Any category with a probability value greater than or equal to

0.7 is assigned to that particular input text.
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7. WEB APPLICATION OUTPUT

=  Nepali News Categorization ADDVIDED LOGOUT &¥

About the Project Weekly stats -
tending ~

National (& Sports (@eg)
A8 A% §9 FRAH FE | Reliance Life Nepali politics #Bidhya bhattarai |faan Wz st CAN has announced the 20 player squad for

Figure 7.1: Web application dashboard
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TS Al g e W BTl et WRea! Went 09 FHin! da @fee anfft it aa =i i @ st
T @Re 9 B

Figure 7.2: A video and it’s transcriptions obtained from ASR model
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8. DISCUSSION

With our ASR models, we obtained promising results for Nepali language compared to other
models trained in supervised manner. But there were some constraints that limited our work.
In case of semi-supervised approaches like we’ve used, large unlabelled datasets can make
model learn low level representation very well. But it was difficult for us to get enough unla-
belled data to pretrain our model with. Pretraining with enough unlabelled data would help us
leverage greater benefits of using semi-supervised training techniques. Our results indicate
that most of the pretrained models we started with gave almost similar results. To start with,
CLSRIL-23 did not show very significant improvement compared to wav2vec2.0. It could
possibly be because Nepali data is a very small part of its training data distribution(10.2). It
is also not sure if the languages used in that distribution are close enough to Nepali language,
despite being Indic. Further, the pretraining we added to models before finetuning gave us
similar or slightly worse performance in test sets. This is because we did not have enough data
for pretraining and also because we used the same data for pretraining as we used for fine-
tuning to see if during pretraining, model can focus to capture some extra and gerenalizable
details from the data. But it seems that this resulted in model trying more to memorize than
the model learning any special and general features. Besides, due to limitations in hardware
resources to train such huge models, we could not tune and retrain models to play around
with hyperparameters. We mostly adopted the parameters recommended in the paper. We
also noticed in many cases, the errors in transcripts were because of some typical features of
grammar of Nepali language like matras and other symbols. Also, words derived from other
languages don’t have consistent pronunciation and translations in Nepali. We also noticed
inconsistencies in use of spaces and dhikas in transcripts, especially in naamyogi words in
Nepali. Such constraints of the language and inconsistencies in target transcripts has also re-
sulted in large error rate on generated transcripts that are far more understandable to us upon

reading than the scores indicate.

Similarly, in the case of audio classification by transcripts, we’ve obtained decent results but
in certain cases the model assigns incorrect categories to audios. The reason behind this is
the lack of effective training set. We’ve used individual sentences as a single data point in
training set, however, a single sentence might not be able to represent a particular category
that well. At present, our classification model supports only 5 categories. Even though we
wanted to add more categories, we were constrained by the limited availability of labelled
Nepali news data and the difficulty of manually labelling Nepali news to create a data corpus

within a short time period.
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9. CONCLUSION

In this project, we built a system of ASR for Nepali language followed by the classification
of generated transcripts. For ASR, we collected data from various sources and preprocessed
them using techniques like noise removal, change of sampling rate and number of channels.
Different open source usable models and datasets were explored in the course of develop-
ing the system. Two pretrained models, wav2vec2.0 (pretrained previously in English only)
and CLSRIL-23 ( pretrained previously on 23 Indic languages) were used as base models
for ASR. Unsupervised pretraining was added in both the models to develop two additional
base models for finetuning. To understand the contribution of pretraining in learning low
level representations better, we finetuned both the models once on the original versions with-
out additional pretraining and then again with added pretraining. We used CTC training for
finetuning these models and modified beam search for decoding. In order to improve the
performance of ASR model, we also built different language models with different datasets.
We evaluated the performance of these different models on three different test sets, each with
three different language models and once without a language model. The use of Language
Model gave better results for the models overall. We noticed that addition of pretraining by
us did not bring any improvement in performance, probably due to limited amount of data.
On the other hand, CLSRIL-23 without additional pretraining by us performed slightly better
than wav2vec2.0 without additional pretraining by us, indicating that representations learnt
during pretraining in Indic languages are indeed closer to Nepali than those learnt in model
pretrained in English language only. But the difference was not very significant showing that
there is more room for improvement to obtain a pretrained model, that captures low level rep-
resentations corresponding to Nepali language better. The evaluation of model’s performance
was done using multiple test datasets which comprised of data from different distributions
and speakers. Among the models used, the best results were seen in the model obtained by
finetuning of CLSRIL-23(5.2.2), a model pretrained in 23 different Indic languages.

The output of ASR was further used for classification purpose, for which a classification
model was built. For audio classification, a classification model was developed on top of
MuRIL, an open source model. The audio samples provided to ASR yielded corresponding
transcriptions which were then classified using the classification model. The trained model
was evaluated using test dataset that consisted of sentences from different sources. The results

showed a decent performance on classification task.

Finally, the overall system was presented using a web application.
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10. LIMITATIONS AND FUTURE ENHANCEMENTS

10.1. Limitations

Despite our collective efforts, our final system is bounded by many limitations. Throughout
the project development cycle, we had to work with limited computing resources. The mod-
els we used: wav2vec2, CLSRIL-23, MuRIL are large and complex models which require
excessive computing resources if we are to train with huge dataset. In order to try learning
better representations of audio, we had to perform pretraining of wav2vec2 and CLSRIL-23
with large amount of data but that requires multiple GPUs and huge computational power.
Due to this reason and unavailability of usable and large dataset, we were bound to use a
small dataset for pretraining which has limited the quality of our ASR model.

Our ASR model has many limitations regarding the quality of transcriptions it generates. The
language models we built has certainly improved the quality of transcriptions. However, as
we’ve built the language models from a small corpus, the transcriptions are often incorrect for

less frequently used complex Nepali words and words primarily belonging to other languages.

The ASR model currently takes a significant time period for inference so there is a need
for performance optimization. The ASR model cannot be used for generating transcripts of

real-time audio/video.

Taking about the audio classification, the classification model is currently limited to 5 cate-
gories. Any audio whose content represents some other category shall get labelled as ”Oth-
ers”. However, it is seen that in certain cases, such audios get labelled as one of the 5 cate-
gories which is a blunder by the classification model. This is a major limitation that needs to

be worked upon.

10.2. Future Enhancements

Keeping in mind the above mentioned limitations, we aim to enhance our system in the fol-

lowing ways.

1. We can obtain better audio representations by pre-training self-supervised models like
wav2vec2 and CLSRIL-23 with larger number of data. In the near future, we plan
to collect raw Nepali audios of over 500 hours to pretrain those models in order to

improve the quality of audio representations.
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. The language model can be improved by using huge Nepali text corpus of better quality
and high variability.

. The quality of transcriptions can be improved by implementing rules of Nepali gram-

mar manually for certain cases where the ASR model usually fails.

. In the near future we aim to make the ASR model applicable for real time audio and
videos. This would require methods like building a lightweight model suitable for
production environments, minimizing the time required to load the model by building

a serving model, etc.

. The classification model can be improved to support more than just five categories.
A Dbetter approach is to allow admin to add new categories and certain data associated

with that category, using the web application.
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APPENDIX-A

CLSRIL-23 Data Distribution

The language distribution on train and valid sets in CLSRIL-23 is shown below.

Time in hours
Train | Valid
Assamese 254.9 1.2

Bengali 331.3 1.7
Bodo 26.9 0.13
Dogri 17.1 0.07

English 819.7 3.7

Gujarati 336.7 1.7
Hindi 4563.7 | 23.52

Kannada 451.8 2.14

Maithili 113.8 0.6

Konkani 36.8 0.19

Malayalam | 297.7 1.56
Manipuri 171.9 0.9

Marathi 458.2 2.2

Nepali 31.6 0.18
Odia 131.4 0.63

Punjabi 486.05 | 2.53

Santali 6.56 0.03
Tamil 542.6 2.67

Telugu 302.78 | 1.4l
Urdu 259.68 | 1.20

Kashmiri 67.8 0.37

Sanskrit 58.8 0.30

Total 9767.77 | 48.93

Language

Table 10.1: CLSRIL-23 data distribution

67



Application for Supervised data Collection

With an aim of building a speech data corpus for Nepali language, we have built a web
interface. The web interface displays a certain sentence to the user and the user can record the
audio for the corresponding sentence. In order to facilitate audio classification, we’ve added
options so that the user can select categories that best represent that particular sentence. After
the user submits it, the audio as well as the categories representing that audio gets recorded

in our database. Figure 10.1 shows the web interface for this purpose.

This facilitates building a data corpus for Nepali speech which helps to record large amount

of audios as well as categories for each audio.

Nepali audio data collection

C

Aureht Rmen T nfders YEUgHR Ramee nfagifiares aarieTe 9gE B! ST 39

o

» 0:00/0:06 H i

Select a category that best represents the above text

I Politics [ Sports [ Economy [INational (] Entertainment [ Others

Figure 10.1: Application for supervised data collection of Nepali speech
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APPENDIX-B

Pretraining Logs
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Figure 10.2: Comparison of train and valid statistics for W2V_PT
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C23_PT
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Figure 10.3: Comparison of train and valid statistics for C23 PT
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Finetuning Logs
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Figure 10.4: Comparison of train and valid statistics for W2V_FT
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Word Error Rate
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Figure 10.5: Comparison of train and valid statistics for C23 PT
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Word Error Rate
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Figure 10.6: Comparison of train and valid statistics for W2V_PF
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Figure 10.7: Comparison of train and valid statistics for C23 PF

Text classification Logs
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Figure 10.8: Cross-entropy loss vs epoch comparison for text classification
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APPENDIX-C

Variation of WER and CER in different language models

The variation of WER and CER when different language models were used as shown in the
table below.

Test Dataset
Model LM | OpenSLR test | OpenSLR female 074BCT
WER CER | WER CER WER CER

3-gram | 2.36  0.69 | 23.02 6.54 40.98 10.17
4-gram | 2.23  0.67 | 23.04 6.55 40.98 10.16
5-gram | 2.16  0.65 | 23.05 6.54 40.98 10.16
6-gram | 2.16  0.65 | 23.02 6.54 41.01 10.17

C23 FT

Table 10.2: WER and CER variation with LM
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Original

Speaker

No LM

Combined 5-gram model
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Table 6.8: Speakerwise performance on each sentence using no LM and combined 5-gram
LM on top of C23 FT model. The words in the original text that are not present in the LM
are highlighted in orange whereas the mistaken words are highlighted in magenta.
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